1. Journal Papers

  • Li, T., Wang, Y., Wu, J., 2024. Deriving PM2.5 from satellite observations with spatiotemporally weighted tree-based algorithms: enhancing modeling accuracy and interpretability. npj Climate and Atmospheric Science, 7, 138. https://doi.org/10.1038/s41612-024-00692-4 (SCI, First author)

  • Wu, J., Li, T., Lin, L., Zeng, C., 2024. Progressive gap-filling in optical remote sensing imagery through a cascade of temporal and spatial reconstruction models. Remote Sensing of Environment, 311, 114245. https://doi.org/10.1016/j.rse.2024.114245 (SCI, TOP, Corresponding author)

  • Jin, S., Wang, T., Huang, H., Zheng, X., Li, T., Guo, Z., 2024. A self-adaptive wildfire detection algorithm by fusing physical and deep learning schemes. International Journal of Applied Earth Observation and Geoinformation, 127, 103671. https://doi.org/10.1016/j.jag.2024.103671 (SCI)

  • Chen, J., Hu, R., Chen, L., Liao, Z., Che, L., Li, T., 2024. Multi-sensor integrated mapping of global XCO2 from 2015 to 2021 with a local random forest model. ISPRS Journal of Photogrammetry and Remote Sensing, 208, 107-120. https://doi.org/10.1016/j.isprsjprs.2024.01.009 (SCI, TOP, Corresponding author)

  • Yang, H., Li, T., Wu, J., Zhang, L., 2023. Inter-comparison and evaluation of global satellite XCO2 products. Geo-spatial Information Science, 1-14. https://doi.org/10.1080/10095020.2023.2252017 (SCI, Corresponding author)

  • Wang, Y., Yuan, Q., Li, T., Yang, Y., Zhou, S., Zhang, L., 2023. Seamless mapping of long-term (2010–2020) daily global XCO2 and XCH4 from the Greenhouse Gases Observing Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2), and CAMS global greenhouse gas reanalysis (CAMS-EGG4) with a spatiotemporally self-supervised fusion method.Earth System Science Data, 15, 3597-3622. https://doi.org/10.5194/essd-15-3597-2023 (SCI)

  • Jin, C., Yuan, Q., Li, T., Wang, Y., Zhang, L., 2023. An optimized semi-empirical physical approach for satellite-based PM2.5 retrieval: embedding machine learning to simulate complex physical parameters.Geoscientific Model Development, 16, 4137-4154. https://doi.org/10.5194/gmd-16-4137-2023 (SCI, Corresponding author)

  • Zhang, L., Li, T., Wu, J., Yang, H., 2023. Global estimates of gap-free and fine-scale CO2 concentrations during 2014–2020 from satellite and reanalysis data.Environment International, 178, 108057. https://doi.org/10.1016/j.envint.2023.108057 (SCI, TOP, Corresponding author)

  • Li, T., Wu, J., Wang, T., 2023. Generating daily high-resolution and full-coverage XCO2 across China from 2015 to 2020 based on OCO-2 and CAMS data.Science of The Total Environment, 893, 164921. https://doi.org/10.1016/j.scitotenv.2023.164921 (SCI, TOP, First author)

  • Yang, Q., Yuan, Q., Gao, M., Li, T., 2023. A new perspective to satellite-based retrieval of ground-level air pollution: Simultaneous estimation of multiple pollutants based on physics-informed multi-task learning.Science of The Total Environment, 857, 159542. https://doi.org/10.1016/j.scitotenv.2022.159542 (SCI, TOP)

  • Wu, J., Lin, L., Zhang, C., Li, T., Cheng, X., Nan, F., 2023. Generating Sentinel-2 all-band 10-m data by sharpening 20/60-m bands: A hierarchical fusion network.ISPRS Journal of Photogrammetry and Remote Sensing, 196, 16-31. https://doi.org/10.1016/j.isprsjprs.2022.12.017 (SCI, TOP, Corresponding author)

  • Li, T., Yang, Q., Wang, Y., Wu, J., 2023. Joint estimation of PM2.5 and O3 over China using a knowledge-informed neural network.Geoscience Frontiers, 101499. https://doi.org/10.1016/j.gsf.2022.101499 (SCI,TOP, First and Corresponding author)

  • Zhang, L., Li, T., Wu, J., 2022. Deriving gapless CO2 concentrations using a geographically weighted neural network: China, 2014–2020.International Journal of Applied Earth Observation and Geoinformation, 114, 103063. https://doi.org/10.1016/j.jag.2022.103063 (SCI,TOP, Corresponding author)

  • Yin, S., Li, T., Cheng, X., Wu, J., 2022. Remote sensing estimation of surface PM2.5 concentrations using a deep learning model improved by data augmentation and a particle size constraint.Atmospheric Environment, 287, 119282. https://doi.org/10.1016/j.atmosenv.2022.119282 (SCI,TOP, Corresponding author)

  • Yang, Q., Yuan, Q., Li, T., 2022. Ultrahigh-resolution PM2.5 estimation from top-of-atmosphere reflectance with machine learning: Theories, methods, and applications.Environmental Pollution, 306, 119347. https://doi.org/10.1016/j.envpol.2022.119347 (SCI)

  • Wu, J., Lin, L., Li, T., Cheng, Q., Zhang, C., Shen, H., 2022. Fusing Landsat 8 and Sentinel-2 data for 10-m dense time-series imagery using a degradation-term constrained deep network.International Journal of Applied Earth Observation and Geoinformation, 108, 102738. https://doi.org/10.1016/j.jag.2022.102738 (SCI,TOP)

  • Tan, S., Wang, Y., Yuan, Q., Zheng, L., Li, T., Shen, H., Zhang, L., 2022. Reconstructing global PM2.5 monitoring dataset from OpenAQ using a two-step spatio-temporal model based on SES-IDW and LSTM.Environmental Research Letters, 17, 034014. https://doi.org/10.1088/1748-9326/ac52c9 (SCI)

  • Li, T., Wu, J., Chen, J., Shen, H., 2022. An Enhanced Geographically and Temporally Weighted Neural Network for Remote Sensing Estimation of Surface Ozone. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13. https://doi.org/10.1109/TGRS.2022.3187095 (SCI,TOP, First author)

  • Li, S., Jing, H., Yuan, Q., Yue, L., Li, T., 2022. Investigating the spatio-temporal variation of vegetation water content in the western United States by blending GNSS-IR, AMSR-E, and AMSR2 observables using machine learning methods. Science of Remote Sensing, 6, 100061. https://doi.org/10.1016/j.srs.2022.100061 (SCI)

  • Jing, Y., Lin, L., Li, X., Li, T., Shen, H., 2022. Cascaded Downscaling–Calibration Networks for Satellite Precipitation Estimation. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. https://doi.org/10.1109/LGRS.2022.3214083 (SCI)

  • Jing, Y., Lin, L., Li, X., Li, T., Shen, H., 2022. An attention mechanism based convolutional network for satellite precipitation downscaling over China. Journal of Hydrology, 128388. https://doi.org/10.1016/j.jhydrol.2022.128388 (SCI)

  • Chen, J., Shen, H., Li, X., Li, T., Wei, Y., 2022. Ground-level ozone estimation based on geo-intelligent machine learning by fusing in-situ observations, remote sensing data, and model simulation data. International Journal of Applied Earth Observation and Geoinformation, 112, 102955. https://doi.org/10.1016/j.jag.2022.102955 (SCI)

  • Wang, Y., Yuan, Q., Li, T., Zhu, L., 2022. Global spatiotemporal estimation of daily high-resolution surface carbon monoxide concentrations using Deep Forest. Journal of Cleaner Production, 350, 131500. https://doi.org/10.1016/j.jclepro.2022.131500 (SCI)

  • Hu, Y., Zeng, C., Li, T., Shen, H., 2022. Performance comparison of Fengyun-4A and Himawari-8 in PM2.5 estimation in China. Atmospheric Environment, 271, 118898. https://doi.org/10.1016/j.atmosenv.2021.118898 (SCI)

  • Jin, C., Wang, Y., Li, T., Yuan, Q., 2022. Global validation and hybrid calibration of CAMS and MERRA-2 PM2.5 reanalysis products based on OpenAQ platform. Atmospheric Environment, 274, 118972. https://doi.org/10.1016/j.atmosenv.2022.118972 (SCI)

  • Li, T., Shen, H., Yuan, Q., Zhang, L., 2022. A Locally Weighted Neural Network Constrained by Global Training for Remote Sensing Estimation of PM2.5. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2021.3074569 (SCI, TOP, First author)

  • Wu, J., Li, T., Zhang, C., Cheng, Q., Shen, H., 2021. Hourly PM2.5 Concentration Monitoring With Spatiotemporal Continuity by the Fusion of Satellite and Station Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/jstars.2021.3103020 (SCI)

  • Li, T., Cheng, X., 2021. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach. International Journal of Applied Earth Observation and Geoinformation, 101, 102356. https://doi.org/10.1016/j.jag.2021.102356 (SCI Q1, TOP, First author)

  • Yang, Q., Wang, B., Wang, Y., Yuan, Q., Jin, C., Wang, J., Li, S., Li, M., Li, T., Liu, S., Shen, H., Zhang, L., 2021. Global air quality change during COVID-19: a synthetic analysis of satellite, reanalysis and ground station data. Environmental Research Letters, 16, 074052. https://doi.org/10.1088/1748-9326/ac1012 (SCI, TOP)

  • Wang, Y., Yuan, Q., Li, T., Tan, S., Zhang, L., 2021. Full-coverage spatiotemporal mapping of ambient PM2.5 and PM10 over China from Sentinel-5P and assimilated datasets: Considering the precursors and chemical compositions. Science of The Total Environment, 793, 148535. https://doi.org/10.1016/j.scitotenv.2021.148535 (SCI, TOP)

  • Wang, Y., Yuan, Q., Li T., Zhu, L., Zhang, L., 2021. Estimating daily full-coverage near surface O3, CO, and NO2 concentrations at a high spatial resolution over China based on S5P-TROPOMI and GEOS-FP. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 311-325. https://doi.org/10.1016/j.isprsjprs.2021.03.018 (SCI Q1, TOP)

  • Wang, B., Yuan, Q., Yang, Q., Zhu, L., Li T., Zhang, L., 2021. Estimate hourly PM2.5 concentrations from Himawari-8 TOA reflectance directly using geo-intelligent long short-term memory network. Environmental Pollution, 271, 116327. https://doi.org/10.1016/j.envpol.2020.116327 (SCI, TOP)

  • Zhang, X., Shen, H., Li T., Zhang, L., 2020, The Effects of Fireworks Discharge on Atmospheric PM2.5 Concentration in the Chinese Lunar New Year. International Journal of Environmental Research and Public Health, 17. https://doi.org/10.3390/ijerph17249333 (SCI)

  • Yang, Q., Yuan, Q., Li T., Yue, L., 2020. Mapping PM2.5 concentration at high resolution using a cascade random forest based downscaling model: Evaluation and application. Journal of Cleaner Production, 277, 123887. https://doi.org/10.1016/j.jclepro.2020.123887 (SCI Q1, TOP)

  • Li T., Wang, Y., Yuan, Q., 2020. Remote Sensing Estimation of Regional NO2 via Space-Time Neural Networks. Remote Sensing, 12. https://doi.org/10.3390/rs12162514 (SCI, First author)

  • Li T., Shen, H., Yuan, Q., Zhang, L., 2020. Geographically and temporally weighted neural networks for satellite-based mapping of ground-level PM2.5. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 178-188. https://doi.org/10.1016/j.isprsjprs.2020.06.019 (SCI Q1,TOP, First author)

  • Li T., Shen, H., Zeng, C., Yuan, Q., 2020. A Validation Approach Considering the Uneven Distribution of Ground Stations for Satellite-Based PM2.5 Estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1312-1321. https://doi.org/10.1109/JSTARS.2020.2977668 (SCI, First author)

  • Yang, Q., Yuan, Q., Yue, L., Li T., Shen, H., Zhang, L., 2020. Mapping PM2.5 concentration at a sub-km level resolution: A dual-scale retrieval approach. ISPRS Journal of Photogrammetry and Remote Sensing, 165, 140-151. https://doi.org/10.1016/j.isprsjprs.2020.05.018 (SCI Q1,TOP, Co-corresponding author)

  • Wang, J., Yuan, Q., Shen, H., Liu, T., Li T., Yue, L., Shi, X., Zhang, L., 2020. Estimating snow depth by combining satellite data and ground-based observations over Alaska: A deep learning approach. Journal of Hydrology, 585, 124828. https://doi.org/10.1016/j.jhydrol.2020.124828 (SCI, TOP)

  • Yuan, Q., Shen, H., Li T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., Gao, J., Zhang, L., 2020. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241, 111716. https://doi.org/10.1016/j.rse.2020.111716 (SCI Q1,TOP, ESI Highly Cited Paper, ESI Hot Paper)

  • Shen, H., Jiang, Y., Li T., Cheng, Q., Zeng, C., Zhang, L., 2020. Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data. Remote Sensing of Environment, 240, 111692. https://doi.org/10.1016/j.rse.2020.111692 (SCI Q1,TOP)

  • Yang, Q., Yuan, Q., Yue, L., Li T., 2020. Investigation of the spatially varying relationships of PM2. 5 with meteorology, topography, and emissions in China in 2015 by using modified geographically weighted regression. Environmental Pollution, 114257. https://doi.org/10.1016/j.envpol.2020.114257 (SCI, TOP)

  • Yuan, Q., Xu, H., Li T., Shen, H., Zhang, L., 2020. Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S. Journal of Hydrology, 580, 124351. https://doi.org/10.1016/j.jhydrol.2019.124351 (SCI, TOP)

  • Wang, Y., Yuan, Q., Li T., Shen, H., Zheng, L., Zhang, L., 2019. Large-scale MODIS AOD products recovery: Spatial-temporal hybrid fusion considering aerosol variation mitigation. ISPRS Journal of Photogrammetry and Remote Sensing, 157, 1-12. https://doi.org/10.1016/j.isprsjprs.2019.08.017 (SCI Q1, TOP, Co-corresponding author)

  • Yuan, M., Song, Y., Huang, Y., Shen, H., Li T., 2019. Exploring the association between the built environment and remotely sensed PM2.5 concentrations in urban areas. Journal of Cleaner Production, 220, 1014-1023. https://doi.org/10.1016/j.jclepro.2019.02.236 (SCI Q1, TOP)

  • Yang, Q., Yuan, Q., Yue, L., Li T., Shen, H., Zhang, L., 2019. The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations. Environmental Pollution, 248, 526-535. https://doi.org/10.1016/j.envpol.2019.02.071 (SCI, TOP)

  • Guo, L., Luo, J., Yuan, M., Huang, Y., Shen, H., Li T., 2019. The influence of urban planning factors on PM2.5 pollution exposure and implications: A case study in China based on remote sensing, LBS, and GIS data. Science of The Total Environment, 659, 1585-1596. https://doi.org/10.1016/j.scitotenv.2018.12.448 (SCI, TOP)

  • Wang, Y., Yuan, Q., Li T., Shen, H., Zheng, L., Zhang, L., 2019. Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces. Atmospheric Environment, 200, 280-301. https://doi.org/10.1016/j.atmosenv.2018.12.023 (SCI, TOP, ESI Highly Cited Paper)

  • Chen, J., Shen, H., Li T., Peng, X., Cheng, H., Ma, C., 2019. Temporal and Spatial Features of the Correlation between PM2. 5 and O3 Concentrations in China. International Journal of Environmental Research and Public Health, 16, 4824. https://doi.org/10.3390/ijerph16234824 (SCI)

  • Shen, H., Zhou, M., Li T., Zeng, C., 2019. Integration of Remote Sensing and Social Sensing Data in a Deep Learning Framework for Hourly Urban PM2.5 Mapping. International Journal of Environmental Research and Public Health, 16. https://doi.org/10.3390/ijerph16214102 (SCI)

  • Yuan, Q., Li, S., Yue, L., Li T., Shen, H., Zhang, L., 2019. Monitoring the Variation of Vegetation Water Content with Machine Learning Methods: Point–Surface Fusion of MODIS Products and GNSS-IR Observations. Remote Sensing, 11. https://doi.org/10.3390/rs11121440 (SCI)

  • Shen, H., Li T., Yuan, Q., Zhang, L., 2018. Estimating Regional Ground-Level PM2.5 Directly From Satellite Top-Of-Atmosphere Reflectance Using Deep Belief Networks. Journal of Geophysical Research: Atmospheres, 123, 13,875-813,886. https://doi.org/10.1029/2018JD028759 (SCI, TOP)

  • Xu, H., Yuan, Q., Li T., Shen, H., Zhang, L., Jiang, H., 2018. Quality Improvement of Satellite Soil Moisture Products by Fusing with In-Situ Measurements and GNSS-R Estimates in the Western Continental U.S. Remote Sensing, 10. https://doi.org/10.3390/rs10091351 (SCI)

  • Yuan, M., Huang, Y., Shen, H., Li T., 2018. Effects of urban form on haze pollution in China: Spatial regression analysis based on PM2.5 remote sensing data. Applied Geography, 98, 215-223. https://doi.org/10.1016/j.apgeog.2018.07.018 (SSCI, ESI Highly Cited Paper)

  • Li T., Shen, H., Yuan, Q., Zhang, X., Zhang, L., 2017. Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach. Geophysical Research Letters, 44, 11,985-11,993. https://doi.org/10.1002/2017gl075710 (SCI Q1, TOP, First author, ESI Highly Cited Paper)

  • Yang, Q., Yuan, Q., Li T., Shen, H., Zhang, L., 2017. The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. International Journal of Environmental Research and Public Health, 14. https://doi.org/10.3390/ijerph14121510 (SCI)

  • Li T., Shen, H., Zeng, C., Yuan, Q., Zhang, L., 2017. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment. Atmospheric Environment, 152, 477-489. http://dx.doi.org/10.1016/j.atmosenv.2017.01.004 (SCI, TOP, First author, ESI Highly Cited Paper)

  • 陈戴荣,崔玉祥,苏悦侬,吴金橄,李同文, 2013. 考虑周期性的深度学习臭氧预测模型研究. 环境监控与预警. http://www.hjjkyyj.com/html/hjjkyyj/2023/3/A20220916001.htm (Corresponding author)(in Chinese)

  • 杨倩倩, 靳才溢, 李同文, 袁强强, 沈焕锋, 张良培, 2021. 数据驱动的定量遥感研究进展与挑战. 遥感学报. http://www.ygxb.ac.cn/thesisDetails#10.11834/jrs.20211410 (EI)(in Chinese)

  • 江芸, 李同文, 程青, 沈焕锋, 2021. 利用时空神经网络模型的长江经济带气温反演. 武汉大学学报(信息科学版), 1-10. http://ch.whu.edu.cn/cn/article/doi/10.13203/j.whugis20210192 (EI)(in Chinese)

  • 沈焕锋, 李同文, 2019. 大气PM2.5遥感制图研究进展. 测绘学报, 48, 1624. http://xb.sinomaps.com/CN/10.11947/j.AGCS.2019.20190456 (EI, Corresponding author)(in Chinese)

2. Conference Paper

  • Wang, Y., Yuan, Q., Xiao, R., Li T., Zhang, L., 2020. Recovery of the Carbon Monoxide Product from S5P-TROPOMI by Fusing Multiple Datasets: A Case Study in Hubei Province, China. 2020 IEEE International Geoscience and Remote Sensing Symposium. pp. 5529-5532. Waikoloa, HI, USA. http://dx.doi.org/10.1109/IGARSS39084.2020.9323092

  • Xu, H., Yuan, Q., Li T., Shen, H., Zhang, L., 2019. Estimating Surface Soil Moisture from Satellite Observations Using Machine Learning Trained on In Situ Measurements in the Continental U.S. 2019 IEEE International Geoscience and Remote Sensing Symposium. pp. 6166-6169. Yokohama, Japan. http://dx.doi.org/10.1109/IGARSS.2019.8900101

  • Wang, Y., Yuan, Q., Wang, H., Li T., Shen, H., Zhang, L., 2019. Validation of MODIS 1-Km MAIAC Aerosol Products with AERONET in China During 2008-2016. 2019 IEEE International Geoscience and Remote Sensing Symposium. pp. 7610-7613. Yokohama, Japan. http://dx.doi.org/10.1109/IGARSS.2019.8898248

  • Wang, J., Yuan, Q., Li T., Shen, H., Zhang, L., 2019. Estimating Snow-Depth by Fusing Satellite and Station Observations: A Deep Learning Approach. 2019 IEEE International Geoscience and Remote Sensing Symposium. pp. 4109-4112. Yokohama, Japan. http://dx.doi.org/10.1109/IGARSS.2019.8900518

  • Li, S., Yuan, Q., Yue, L., Li T., Shen, H., Zhang, L., 2019. Downscaling GNSS-R Based Vegetation Water Content Product Using Random Forest Model. 2019 IEEE International Geoscience and Remote Sensing Symposium. pp. 6720-6723. Yokohama, Japan. http://dx.doi.org/10.1109/IGARSS.2019.8900472

  • Li T., Zhang, C., Shen, H., Yuan, Q., Zhang, L., 2018. REAL-TIME AND SEAMLESS MONITORING OF GROUND-LEVEL PM2.5 USING SATELLITE REMOTE SENSING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. pp. 143-147. Beijing, China. http://dx.doi.org/10.5194/isprs-annals-IV-3-143-2018

  • Li T., Shen, H., Yuan, Q., Zhang, L., 2018. Deep Learning for Ground-Level PM2.5 Prediction from Satellite Remote Sensing Data. 2018 IEEE International Geoscience and Remote Sensing Symposium. pp. 7581-7584. Valencia, Spain. http://dx.doi.org/10.1109/IGARSS.2018.8519036

  • Zhang, X., Shen, H., Li T., 2016. Effect characteristics of Chinese New Year fireworks/firecrackers on PM2.5 concentration at large space and time scales. 2016 4th International Workshop on Earth Observation and Remote Sensing Applications. pp. 179-182. Guangzhou, China. http://dx.doi.org/10.1109/EORSA.2016.7552792

  • Li T., Shen, H., Zhang, L., 2016. Mapping PM2.5 distribution in China by fusing station measurements and satellite observation. 2016 IEEE International Geoscience and Remote Sensing Symposium. pp. 5761-5764. Beijing, China. http://dx.doi.org/10.1109/IGARSS.2016.7730505

3. Patent (in Chinese)

  • 沈焕锋,李同文. 一种结合卫星和站点观测反演时空连续PM2.5浓度的方法,授权号:ZL201510849327.0. 授权时间:2018.01

  • 沈焕锋,周曼,李同文,袁强强. 一种结合遥感数据与社会感知数据的PM2.5深度学习反演方法. 申请号:201910451339.6.

  • 李同文,阴顺超,程晓,吴金橄,王天星. 一种粒子直径约束的PM2.5深度学习遥感估算方法. 申请号:202111340135.9.

  • 李同文,张岭峰,吴金橄. 一种全局-局部建模结合的卫星CO2浓度缺失信息重建方法. 申请号:202211258374.4.

4. Software Copyright (in Chinese)

  • 沈焕锋,李同文,徐少良,袁强强. 大气PM2.5实时无缝监测发布系统,软件著作权登记号:2019SR0535101.